
Journal of Software Engineering for Robotics 8(1), December 2017, 151-163
ISSN: 2035-3928

One Fits More – On Highly Modular Quality-Driven
Design of Robotic Frameworks and Middleware

Max REICHARDT1,2 Steffen SCHÜTZ2 Karsten BERNS2

1 Robot Makers GmbH, Merkurstraße 45, 67663 Kaiserslautern, Germany
2 Robotics Research Lab, Department of Computer Science, University of Kaiserslautern, 67663 Kaiserslautern, Germany

Abstract—Robotics software systems have a large and domain-specific range of quality requirements that make development
of reusable software a particular challenge. Frameworks and middleware have a major impact in this respect – on both quality
characteristics and development effort. As framework design involves many tradeoffs, they have different quality and feature profiles –
with no existing solution clearly superior. Analyzing existing approaches, the principle of customizable quality tradeoffs is identified. The
proposed design approach aims at maximizing the principles of concern separation and customizable quality tradeoffs in frameworks:
basically decomposing them into one (optional) module per concern. This allows localizing quality requirements and flexibly tailoring
frameworks to application requirements. In particular, all operating-system-independent concerns can be run “bare metal”. The
proposed concept was implemented in the FINROC framework. The benefits with respect to quality characteristics are evaluated in
a case study: the framework is run “bare metal” on an FPGA soft core – notably a platform not originally targeted. In addition, it is
shown how knowledge on framework design is modeled.

Index Terms—Middleware Infrastructures, Modularity, Robotics Middleware, Software Architectures, Software Quality.

1 MOTIVATION

Due to the large and domain-specific range of quality require-
ments encountered across diverse robotic applications, devel-
opment of reusable software artifacts in robotics is particularly
challenging. Among the numerous relevant quality character-
istics are e.g. performance efficiency, timing determinism, run-
time modifiability, simplicity and conceptual integrity, porta-
bility, concern separation, stability and longevity, standard-
compliance, and testability. Their relevance is application-
specific.

Most quality characteristics are strongly interrelated to oth-
ers and many software design decisions are tradeoffs between
them. Quality characteristics are typically arranged in quality
models. They should be domain-specific, as e.g. [1] states. ISO
25010 contains a well-known quality model to be tailored to
different domains and applications.

Considering all relevant quality characteristics when devel-
oping complex robotic applications from scratch is extremely
challenging – if not unrealistic. Therefore, applications are typ-

Regular paper – Manuscript received July 15, 2017; revised November 20,
2017. Digital Object Identifier: 10.6092/JOSER 2017 08 01 p151

• Authors retain copyright to their papers and grant JOSER unlimited
rights to publish the paper electronically and in hard copy. Use of the
article is permitted as long as the author(s) and the journal are properly
acknowledged.

ically based on robotic frameworks, middleware, and toolkits1.
They significantly reduce the complexity of application de-
velopment. Universal frameworks handle many concerns that
are relevant across a broader range of applications – typically
including e.g. interface definition, network communication,
scheduling, and tooling. Frameworks have a major impact on
software quality. They can support or even guarantee certain
quality concerns such as timing determinism, interoperability,
or portability – e.g. if and how easily robotics software can
be ported to small embedded computing nodes. Furthermore,
the framework is the basis of an application’s architecture –
and the architecture has a fundamental impact on software
quality [2].

Hence, research on frameworks is a key topic for improving
quality and productivity in robotics software development.

2 RELATED WORK
Numerous Robotic frameworks have been proposed and de-
veloped. Although ROS [3] has been adopted by a significant
number of research institutions, we believe that key statements
of Makarenko et al. [4] are still valid:

1) “none of the existing solutions is clearly superior”
2) the difficulty in making comparisons “leads to a com-

parison between ’apples and oranges”’

1. For simplicity, the term framework is used for all three in the following.

www.joser.org - c© 2017 by M. Reichardt, S. Schütz, K. Berns

152 Journal of Software Engineering for Robotics 8(1), December 2017

3) “a one-size-fits-all solution to building robotic systems
may be unachievable and undesirable”

Regarding the first statement, many framework design de-
cisions are tradeoffs between different quality attributes. They
cannot be considered as generally “better” or “worse”. The
decision of whether to use an IDL is an interesting example.
As a result, frameworks have different feature and quality
profiles that make them more, less, or not suitable for specific
applications. Notably, feature bloat is a delicate pitfall in this
context – detrimental to many quality characteristics such as
maintainability, portability, and ease of use.

Regarding the second statement, it is challenging to measure
quality characteristics. Furthermore, there are many potentially
relevant characteristics and they typically have multiple di-
mensions. Thus, most comparisons primarily focus on features
– e.g. [5], [6]. There are also quantitative comparisons on
a limited set of quality characteristics – most commonly
performance efficiency, and latency (see e.g. [7]).

Regarding the third statement, we believe that this is an in-
evitable consequence of many design decisions being (quality)
tradeoffs. In this work, however, we propose an approach for
“one fits more” solutions. Minimizing the tradeoffs between
specific pairs of relevant quality attributes is a related impor-
tant area of research and design.

As mentioned, ROS is currently the most well-known and
wide-spread solution. Its authors, however, identified signif-
icant shortcomings that motivated the development of ROS
2.02. These include unsuitability for real-time systems and
small embedded computing nodes – possibly bare metal.
Notably, these challenges are addressed in this work.

The AUTOSAR standard from automotive industry is in
several ways similar to a (model-driven) robotics framework
and is occasionally also used for robotic applications. Instead
of an implementation, it is an extensive specification that
allows for competing implementations. Notably, its design
is also motivated by quality characteristics such as modu-
larity, scalability, and reusability3. Until recently, significant
constraints (e.g. no HEAP allocation) for small computing
nodes and timing determinism, however, also limited quality
characteristics (such as flexibility) required on higher levels
of autonomous systems. Therefore, the AUTOSAR Adaptive
Platform was added in 2017. It is a new additional standard
based on POSIX operating systems and targets more powerful
computing nodes. Combining two frameworks (or layers)
with different quality characteristics for low- and high-level
robot control is not uncommon (see e.g. NASA’s CLARAty
Framework [8]). Interoperability between those layers and a
small gap in the development process is critical with respect
to development effort and maintainability of resulting systems.

The Player Project [9] is a well-known discontinued frame-
work featuring an exchangeable network transport layer. It

2. http://design.ros2.org/articles/why ros2.html
3. http://www.autosar.org/about/

Core

Core Concerns

stnemelE noitinifeD ecafr
et

nI

snrecnoC esaB

snrecnoC faeL

Components

Fig. 1: Layered top-level decomposition of a robotic frame-
work motivated by the core/periphery pattern.

allows using different network transports – with different
quality attributes – depending on application requirements.
Apart from the default custom TCP implementation, there
is e.g. an implementation based on the JINI standard. This
way, Player’s networking supports a broader spectrum of
potential quality requirements – and therewith applications.
We call such variability the principle of customizable quality
tradeoffs.

Somewhat similar, Orocos [10] allows using transports with
different quality profiles also for intra-process communication
(e.g. one for real-time support, one for high throughput of
large buffers). It decouples these transports from interface
definitions – an example for separation of concerns, a
fundamental design principle that is beneficial with respect
to many quality characteristics. Opros [6] and GenoM3 [11]
also feature transport-independence, which is itself considered
a relevant quality characteristic of robotics frameworks. Fitz-
patrick et al. [12] discuss advantages of transport-indenpence
in YARP with respect to stability and longevity in particular.

Furthermore, there are model-driven approaches such as
the OMG Robotic Technology Component (RTC) standard4

in robotics. They feature platform-independent software en-
tities that are transformed to platform-specific artifacts. The
target platforms can have very different quality characteristics
– and may include small embedded nodes (see e.g. [13]).
This also allows for customizable quality tradeoffs. Whether
to use a model-driven approach is notably also a quality
tradeoff. Therefore, research on both model-driven and non-
model-driven approaches is considered important – and also

4. http://www.omg.org/spec/RTC/

http://design.ros2.org/articles/why_ros2.html
http://www.autosar.org/about/
http://www.omg.org/spec/RTC/

M. REICHARDT et al./ On Highly Modular Quality-Driven Design of Robotic Frameworks and Middleware 153

core

time xml

logging

threading serialization

concurrent
containers rtti

bu�er pools rtti conversion

data ports

bl
ac

kboards

str
op c

pr srete

marap

scheduling prim
itives

component model

ru
nt

im
e

co
ns

tru
ctio

n

revr
es

be
w

tropsnart krowten

gnidrocer atad

component models ...

...
co

m
ponen

ts

Fi
nr

oc
Fi

nr
oc

co
m

po
ne

nt
s

IB
2C

IB
2C

co
m

po
ne

nt
s

M
CA

2
M

CA
2

co
m

po
ne

nt
s

M
ATLA

B
M

ATLA
B

com
ponents

Sm
art

M
ars

Sm
artM

ars

com
ponents

RO
S

RO
S

com
ponents

RTC

RTC

com
ponents

ru
nt

im
e t

yp
e co

nv.

MJPG

libPCL

ROS

sc
rip

tin
g

&
 D

SL
s

UrbiScript

Javascript

Python

sel
udo

m
be

w

Browser

GUI

Web

se
rv

ice
s

stropsnart krowtenW
eb

so
ck

et
s

D
D

S

RO
S

O
PC

 U
A

Ethercat

ICE

TCP

FinEm
bP

sdnekcab .cer

Binary

CSV

SQL
slit u tne

m
poleved Spec.checker

Port
observer

Runtime
diagnostics

Tracing

scheduling Data Flow
Xenomai

Pre
-

computed

Tools

smetsyS dekrowteN rehtO

(a) The proposed vision of a highly modular framework: The blocks are an example of how the different
layers could be decomposed. Further elements can be added on all layers later on.

(b) Example “heat map”
for many evolution quali-
ties

(c) Example “heat map”
for performance efficiency

Fig. 2: Highly modular framework design and localized quality requirements

complementary, as model-driven toolchains are developed that
support non-model-driven solutions such as ROS (e.g. [11],
[14]). A non-model-driven approach was chosen for the proof-
of-concept presented in Section 5 – though highly modular
designs should be applicable in Model-Driven Software De-
velopment (MDSD) also.

3 HIGHLY MODULAR FRAMEWORK DESIGN

The presented research aims at applying the principles of con-
cern separation and customizable quality tradeoffs conducted
in earlier work more extensively – and to analyze the result
with respect to its feasibility and its implications on quality
characteristics. The modular approach is further motivated by
common critical tradeoffs such as feature completeness vs.

feature bloat – or stability and maturity vs. rapid development
of new framework features (framework evolution). Addition-
ally, it aims at localizing quality characteristics to preferably
few software entities in order to cope with design complexity
– as well localization of change in general, for improved
modifiability and maintainability.

Motivated by the implied quality characteristics, ma-
jor elements from the microkernel pattern [15] and the
core/periphery pattern [2] are adopted. In this regard, Bass
et al. emphasize that “the core must be small” [2] as well
as “The core needs to be highly modular, and it provides the
foundation for the achievement of quality attributes”. Due to
the large community, ROS can be considered an example of
the core/periphery pattern in robotics.

154 Journal of Software Engineering for Robotics 8(1), December 2017

On the highest level, we decompose frameworks into layers:
a slim Core with various Core Concerns, Interface Definition
Elements, Base Concerns, Leaf Concerns, and repositories of
Components (see Fig. 1). Dependencies only exist from the
outside to the inside and to other elements in the same layer
– but not cyclic. The architecture is not strictly layered.

Typical Base Concerns of frameworks include compo-
nent model(s) (application decomposition), scheduling and
dispatching (runtime model), network communication, and
runtime modifiability. Leaf Concerns can either specialize the
abstract Base Concerns (e.g. different network transports) or
provide additional functionality based on them.

Reasons for choosing this layered top-level decomposition
include:

• The adopted patterns are already layered to some extent.
• A simple and clear decomposition structure is considered

important – for both communicating it and to avoid ar-
chitecture degeneration. With this target, the layers were
derived from analyzing dependencies between framework
concerns developed and identified in both related and less
structured earlier work (e.g. [16]).

• Clear rules on unidirectional dependencies are beneficial
for maintainability – a lesson also learnt from early work.

Notably, some solutions – as e.g. Orca 2 [4] or OpenRTM-
aist [17] – rely on generic third-party middleware packages for
interface definition and transport. This reduces development
and maintenance effort. The quality characteristics of these
middleware packages are, however, also adopted.

Fig. 2a illustrates a more fine-grained framework decom-
position on this basis. This is the concept and vision of
what is pursued in our work on frameworks: All framework
concerns are separate software entities – possibly subdivided
into sub-concerns. All blocks outside the core are optional.
Core Concerns not portable to all desired target platforms must
also be optional. Blocks may have multiple implementations,
possibly platform-specific and with different quality profiles.
By choosing a suitable fragment from the set of available
blocks, the framework can be tailored to application require-
ments and even requirements in different phases of projects.
Furthermore, the framework scope is flexible. Used without
base and leaf concerns except of network transports, for
instance, the framework is a plain communication middleware.

Every block has its own quality profile – and quality
requirements can be localized to these blocks. For example,
efficiency and real-time requirements are primarily important
for transports and scheduling. This can be visualized as a
heat map – as done in Fig. 2c. It displays the same blocks
as Fig. 2a – without the outer ring containing components,
Tools, and Other Networked Systems. Red indicates that a
block is potentially of high relevance for the respective
quality characteristic of the resulting system. Blue indicates
low relevance. Timing determinism is an interesting example
with respect to localization: if timing-critical functionality
required from other blocks is time-bounded (e.g. lock-free), an

application’s timing requirements can be localized to possibly
platform-specific scheduling blocks. These are instantiated and
configured by the application (it may have a direct dependency
to e.g. Xenomai). When required, the scheduling concern can
be replaced without modifying the rest of the application.
Several quality characteristics – such as stability, maturity,
maintainability, portability, and longevity – share the simple
heat map shown in Fig. 2b that is somewhat aligned to the
layers.

The modular concept is also beneficial for portability – with
operating-system-independence being a particularly interesting
quality characteristic for single blocks: combinations of blocks
which are all operating-system-independent can be used bare
metal.

As common for modular designs, module interfaces play
a key role with respect to overall system quality. Thus, the
choice of interface definition technique is of major importance
– and also a quality tradeoff. The proposed concept is not
limited to specific interface definition techniques. In the proof-
of-concept presented in Section 5, plain C++ headers are used
– state of the art in open source C/C++ software development
(e.g. libraries). All blocks are compiled to separate shared
libraries. Apart from that, higher-level (outer) blocks may use
elements from the Interface Definition Layer – e.g. for uniform
configuration.

Supporting multiple component models to increase software
reuse and integrability is another target. Component model
implementations use common features from other layers –
such as typically ports, connectors, and an abstract component
class. Particularly these elements are found in many compo-
nent models including the ones from the UML MARTE and
AUTOSAR standards – or the RTC, and BRICS component
models ([18], [14]) from robotics. Notably, concerns and tools
operating on data structures from inner framework layers, can
present and handle components from different models in a
unified way.

The concept furthermore targets dynamic loading of blocks
– allowing to add crosscutting concerns without recompila-
tion and also at runtime. Use cases include concerns such
as scripting, interoperability, data recording, or facilities for
development and debugging. Notably, this enables dynamic
reconfiguration also on a framework level – increasing the
overall flexibility and adaptability. In other words, it enables
runtime modification of a framework’s quality profile and
features.

4 MODELING DESIGN KNOWLEDGE
Following a systematic approach when designing a robotic
framework is a complex and challenging task. There are
numerous relations between quality characteristics, design
principles, framework concerns, requirements, and many other
factors relevant for design.

Designers face many questions that are difficult to answer
systematically – such as:

M. REICHARDT et al./ On Highly Modular Quality-Driven Design of Robotic Frameworks and Middleware 155

Fig. 3: Packages of the domain meta model

• Quality Characteristics: What are relevant quality charac-
teristics of robotics software? How are they related? How
can they be measured?

• Design: Which design principles5 have been proposed?
Which quality characteristics do they influence? To which
framework concerns have they been applied?

• Framework scope and concerns: Which concerns do
frameworks usually cover? Which other concerns have
been proposed and implemented?

• Application Requirements: What are typical application
requirements for robotics frameworks? Which importance
do quality characteristics have for different kinds of users
and stakeholders?

• On specific framework concerns: What are design alter-
natives? Which quality characteristics do they influence?
What are typical requirements? What are mandatory
requirements if certain system properties are desired?
Which quality characteristics are most relevant?

Qualified answers to these questions require a lot of knowl-
edge in robotics software engineering. In many cases it would
be difficult and elaborate to give complete answers, due to
the numerous design factors and their relations. For unsys-
tematically obtained answers, it can usually be questioned
why specific elements have been mentioned – while others
have been omitted. Nevertheless, such questions need to be
answered in a systematic framework design approach.

As a good starting point, some authors collect and promote
design principles (or “best practices”) for robotics software
design (e.g. [19]). Due to limitations in scope and space,
publications can only give partial answers to many of the
questions listed above. It is furthermore challenging to cover
all relevant design factors and their relations in a (linear) text

5. In the following, “design principle” is used as a generic term for “de-
sign approach”, “design method”, “design policy”, “design pattern”, “design
philosophy”, “design (best) practice”, “architectural tactic” etc.

Fig. 4: The Common modeling package

without extensive cross-referencing6.
We believe that modeling the body of knowledge is required

to some extent in order to cope with these challenges. It
is furthermore a step towards more systematic reasoning
on design alternatives. The result could serve as a kind of
Framework Design Catalog or Overview.

We therefore developed a meta model for quality-driven
framework design and used it to model a considerable amount
of domain knowledge. The meta model is divided into four
levels with different concerns – as shown in Fig. 3.

The Common package illustrated in Fig. 4 provides abstract
common elements such as relations, terms, definitions, or
publications. Being this generic, it could notably also serve
as basis for modeling other domains. It was created with the
following targets and considerations:

• It should be possible to express common relations and
their properties formally in the model (e.g. “in conflict
with”, “sub-element of”). These common relations in-
clude the named relations in the class diagrams. As there
are, however, many other kinds of relevant relations, sim-
ple associations between elements are also allowed. Such
associations are processed if the model is e.g. queried for
all elements that are related to runtime modifiability over
two levels of relations. Thus, the model can be classified
as a semantic network.

• It is possible to create relations to relations. For instance,
two quality characteristics may typically be in conflict.
Design Principles to minimize this conflict need to refer-
ence this relation.

• Authors may have different views on certain topics. It
should be possible to model this. Therefore, publications
(and optionally quotes) can be linked to model elements.
This e.g. makes it possible to query who has written about

6. These experiences were actually made in initial attempts to answer some
of the above questions in the scope of a PhD thesis. Towards increasing
levels of detail and completeness, discussing these topics became increasingly
difficult to structure, verbose, and hard to read.

156 Journal of Software Engineering for Robotics 8(1), December 2017

Fig. 5: The Frameworks modeling package

certain model elements.
• Instances may inherit from multiple meta model ele-

ments. For instance, the ISO-25010 quality model can be
QualityModel and Standard at the same time. Challenges
are often also a Motivation for other elements.

• Clusters can be used to group model elements. They can
be useful for defining relations that are valid for all of
the elements.

Fig. 6 shows the Quality package to model quality char-
acteristics and their relations – as well as quality metrics,
and quality models. As different quality models arrange and
name quality characteristics differently (e.g. “changeability”
vs. “modifiability”), their hierarchy in each quality model is
modeled separately using the QualityModelNode class.

The Framework package (see Fig. 5) deals with framework
concerns and requirements. It distinguishes between quality
characteristics of robotic frameworks and applications. For
this purpose, there is an additional framework-specific and an
additional application-specific instance for each general qual-
ity characteristic. When this distinction is relevant, relations
reference these. For instance, application requirements already
provided by the framework (e.g. interoperability) contribute
to the application’s simplicity – but not to the framework’s
simplicity. Also, specific quality characteristics of frameworks
and applications are not necessarily aligned. While a portable
application typically requires a portable framework, usability
of an application is much less related to the usability of a
framework.

Framework concerns are arranged hierarchically. When de-
signing a framework, this hierarchy can be used as a guideline
on its structural decomposition. Notably, such modeling has
contributed to reaching the structural decomposition in Figs. 1
and 2a. Framework requirements, features, and their typical
value for groups of stakeholders are also modeled. A Stake-
holderValuation rates an element with respect to one stake-
holder group. The stakeholder groups can e.g. be researchers,
end users, and product developers of small or large series.

Finally, the Design package displayed in Fig. 7 is used

to model design principles and design alternatives. Design
alternatives typically relate to specific framework requirements
or concerns – and they may comprise applying the more
generic design principles. The tradeoffs involved with choos-
ing certain design principles or design alternatives are modeled
with DesignImplicationss. They relate to quality characteristics
in particular.

The meta model as a whole conveys a coarse idea on the
complexity of framework design: which classes of elements
need to be considered and how they are related. Basically, all
topics addressed in the introductory list of questions can be
modeled. If required, the model can be extended for further
classes of elements. Alternatively, they can be modeled as
instances of the generic ModelElement and Relation classes.

Not surprisingly, creating useful models of design knowl-
edge based on this meta model requires significant effort.
The models we created so far contain e.g. more than 50
of each quality characteristics, design principles, framework
requirements, and publications. Several approaches are applied
with the aim reduce effort for model creation and maintenance:

• In order to split the model into manageable parts, one sub-
model is created per publication that models its contents.
The final model is then created by merging these sub-
models. This way, all elements can automatically be
related to publications.

• Subsequent, text mining on publications is used to auto-
create model elements (including quotes and hyperlinks)
based on a list of keywords. These can be used as a
starting point. The modeler decides which auto-created
elements are relevant – and adds relations and further
elements manually.

Overall, the modeling approach is still in an early phase and
further experience needs to be gained – including evaluation
of how much value can be drawn from such models. On the
positive side, a considerable amount of insights was obtained
during modeling already – combined with a lot of reasoning
on own designs. Regarding the modular design approach,
many framework concerns from the decomposition in Fig. 2a

M. REICHARDT et al./ On Highly Modular Quality-Driven Design of Robotic Frameworks and Middleware 157

Fig. 6: The Quality modeling package

are also resembled in model – together with a considerable
set of relations to other model elements that are relevant
when designing them. Awareness of relations – to quality
attributes and common requirements in particular – contributes
to reaching the target of “one fits more”.

5 IMPLEMENTATION

The presented modular design concept was implemented in
the FINROC framework7 that serves as a proof-of-concept
and for evaluation. Development was started in 2008 in the
RRLab at the University of Kaiserslautern – with the first
public release in 2013. It is still actively developed. FINROC
preserves application style and valued quality characteristics
of MCA2 [20] that was used before – but overcomes many
of its limitations. Notably, FINROC is also used at Robot
Makers GmbH for the development of commercial robot
control systems (prototypes and smaller series). Professional
support is offered as well.

There is a highly modular C++11 implementation used for
robot control systems – and a native Java implementation
used for tooling and Android-based user interfaces. Fig. 8
shows the C++11 FINROC software artifacts developed so far
that fit into the concept presented in the last section. The
biggest deviation are the scheduling concerns that currently
lack separation. Each artifact is developed in its own code
repository and compiled to a separate library. Any libraries
not already linked to the application executable may be loaded
dynamically at runtime (provided the runtime construction
concern is present). Currently, the core, central plugins, and
most tools are released as open source software8. Both the
RRLab and Robot Makers use FINROC in all active robot
control system development projects – with more than ten
FINROC-based projects successfully completed at each site9.
Both independently maintain and develop repositories with
hundreds of components. This is already evidence that the

7. http://www.finroc.org
8. Source code, instructions, and tutorials are available on the FINROC

homepage. The code can also be browsed via http://www.finroc.org/browser.
9. see http://robotics.unibg.it/tcsoft/simpar2014/22-Wednesday/WeP.6.pdf

http://robotmakers.de/en/references/ or https://agrosy.cs.uni-kl.de/en/robots/

Fig. 7: The Design modeling package

highly modular design approach is feasible – also outside
academia.

Furthermore, the small number of LOC per block is benefi-
cial for maintainability – an aspect particularly stressed by [4].

Unlike e.g. Orocos, the implementation currently features
only one intra-process transport. As presented in [16], it is,
however, suitable for most relevant quality requirements –
being both lock-free and efficient (zero-copy) with support for
dynamic wiring – provided DCAS (double compare-and-swap)
operations can be used. It is implemented in data ports (see
Fig. 8) – with significant dependencies to buffer pools and
concurrent containers provided by the respective libraries.

thread and time deal with multi-threading and time repre-
sentation. They are based on the respective functionality in
the C++11 standard – which provides the basis for platform-
independence. It is possible to compile thread in single-
threaded mode. This replaces concurrent data structures with
simpler ones – and also enables a single-threaded data port
implementation (see [21]). The latter furthermore allows to
map port values to static memory addresses – an opportune
feature for shared memory communication. xml is an optional
core library for dealing with XML. Furthermore, there are
core libraries for logging, serialization and runtime type
information (rtti). The latter allows to handle C++ types in
a uniform way – providing operations such as instantiation,
serialization, and comparison at application runtime. The new
rtti conversion allows for runtime type conversion – a feature
often requested to seamlessly integrate components without
the necessity for separate type-casting components. Any plug-
ins, libraries, and applications can provide and register further
type casting operations.

Concurrent, dynamic application structure – including dy-
namic (component) interfaces – are central features provided
by the core. On the interface definition layer, there is fur-
thermore optional support for blackboards used by some
components – and parameters for uniform component configu-
ration at runtime. Similar to other state-of-the-art frameworks,
RPC ports allow to invoke functions (or “services”) in other
components – which is required for more complex component
interaction patterns.

http://www.finroc.org
http://www.finroc.org/browser
http://robotics.unibg.it/tcsoft/simpar2014/22-Wednesday/WeP.6.pdf
http://robotmakers.de/en/references/
https://agrosy.cs.uni-kl.de/en/robots/

158 Journal of Software Engineering for Robotics 8(1), December 2017

core (5.0 kSLOC)

time (750
SLOC)

xml (714
SLOC)

logging (1.8 kSLOC)

thread (1.7 kSLOC) serialization
 (4.4 kSLOC)

concurrent_
containers (2.3 kSLOC) rtti (3.2 kSLOC)

bu�er_pools
 (603 SLOC)

rtti_
conversion (2.2 kSLOC)

data_ports (6.5 kSLOC)

)COLSk 9.1(

str
op_c

pr

bl
ac

kb
oard (1.6 kSLOC)

)COLSk 4.2(sretemarap

scheduling (1.1 kSLOC)

structure (1.6 kSLOC)

ru
nt

im
e_

co
ns

tru
cti

on (3
.1 kSLOC)

revr
es

_b
e

w

)COLSk 5.4(tropsnart_krowten
)COLS 979(gnidrocer_atad

component models

�n
ro

cib
2crib

2c

m
ca2

rtc

ru
nt

im
e t

yp
e co

nversio
n

mjpg

sc
rip

tin
g

&
DS

Lsurbiscript

beanshell

seludom be
w

browser

gui

stropsnart krowten

web
_so

ck
et

s
dd

s

ro
s

op
c_

ua

et
he

rc
at tcp

prom
id-w

prrt

�nembp

sdnekcab gnidrocer
binary

csv

slitu tne
mpoleved

development_utils

Released on �nroc.org
Used in commercial systems

Available at the RRLab
Reused in multiple projects

Available at the RRLab
Used in completed project

Available at the RRLab
Prototype implementation

Available at Robot Makers GmbH
Used in commercial systems

Released on �nroc.org
New in 17.03 release

SLOC are "Total Physical Source Lines of Code" -
generated using David A. Wheeler's 'SLOCCount'

Fig. 8: Implementation of the proposed concept in the FINROC framework – status quo

structure and network transport contain abstractions and
common functionality for the respective leaf concerns. The for-
mer includes functionality for creating composite components.
Since FINROC 17, the latter also contains a generic network
transport suitable for full-featured peer-to-peer FINROC com-
munication via virtually any communication channel with sup-
port for sending binary messages. It features simple quality of
service (QoS) mechanisms – with runtime-modifiable param-
eters for desired update intervals, data priority, data queues,
congestion control, and monitoring of roundtrip times. The tcp
plugin instantiates this generic transport with TCP/IP sock-
ets. It is currently the default network transport in FINROC.
Combined with appropriate measures for security, it is notably
suitable and used for accessing robots over the Internet – e.g.
for remote maintenance and support.

runtime construction provides functionality to instantiate,
connect, and delete components at application runtime –
including the possibility to store and restore networks of
connected and configured components to and from XML files.

finembp is a custom, Ethernet-based transport for commu-

nication between bare metal nodes and a PC (see [21]) –
including fixed-size messages with deterministic timing. It is
used in the experiments presented in the next section.

For additional insights and to convey a better idea on the
nature of developed commercial systems, statistics for six se-
lected successful projects at Robot Makers were created. They
are all based on the FINROC 14.08 release and were completed
after August 2016. Table 1 contains totals on the number
of components, ports, parameters, and connectors instantiated
in the systems – values characterizing the complexity of the
component integration task. Fig. 9 breaks the total number
of components in these projects up into several categories.
The solid bars represent the number of component types used
in the project. If components are instantiated multiple times,
the additional instances are visualized by hatched bars. The
following component categories have been differentiated:

• Type Converter components: These components merely
convert data types in order to connect data ports of
different types. Since the FINROC 14.08 release, SI
units are used in component interfaces where applicable.

M. REICHARDT et al./ On Highly Modular Quality-Driven Design of Robotic Frameworks and Middleware 159

Project Components Ports Parameters Connectors
Types Instances

1 91 242 1878 705 1100
2 42 58 458 200 312
3 52 111 751 359 454
4 36 113 807 491 352
5 90 253 2641 1342 1388
6 104 572 3074 1705 1837

TABLE 1: Statistics on six commercial Robot Makers projects
– from the domains of agricultural machines, construction
machines, and special purpose vehicles.

Futhermore, there are multiple types for poses and twists
– depending on dimension and uncertainty information.
Notably, using strong types in interfaces has many ben-
efits (e.g. regarding functional correctness), but also led
to the situtation that reused components fit together less
often. As a consequence, between 12 and 22 percent of
component instances in the analyzed projects are type
converters. This motivated supporting native type con-
version capabilities in Finroc 17.03. This makes converter
components obsolete – beneficial not only for maintain-
ability and performance efficiency. A lesson learnt from
this, is the importance of type conversion functionality
when using strong types in component interfaces.

• Trivial Components: These component wrap simple math-
ematical or logical operations, such as “Multiplication”
oder “Comparison”. They are sometimes used to imple-
ment e.g. controllers out of simple blocks (somewhat
similar to other graphical programming environments).
Such structures have popularity due to FINROC’s features
regarding runtime modifiability: control structures can be
changed online without recompiling and restarting the
application. This is opportune for optimizations during
field tests and indicates that this is a relevant quality
characteristic.

• Behaviour components are based on the iB2C architec-
ture’s component model [22].

• Standard are components based on the standard FINROC
component model that do not belong to any of the other
categories.

• Composite components are components containing and
encapsulating other components.

6 EXPERIMENTS AND EVALUATION

6.1 Running FINROC Applications Bare Metal

FINROC was originally developed for powerful computing
nodes executing hundreds and in few cases even thousands
of components. The underlying concept, however, makes its
quality profile sufficiently flexible to be suitable for bare
metal embedded applications also. Notably, components and

1 2 3 4 5 6
0

100

200

300

400

500

600

Project

N
u
m
b
er

of
C
om

p
o
n
en
ts

Type Converter
Trivial
Behavior
Standard
Composite

Fig. 9: Detailed breakdown of the number of components in six
Robot Makers projects. The solid bars represent the number
of component types per component category. The hatched bars
above indicate the additional number of instances for each
category (if components are instantiated more than once).

applications are developed in the same way – the platform-
independent ones can be used in both worlds. Also the same
tooling can be used. This mitigates the gap in the devel-
opment process usually found between PCs and embedded
systems [23]. We are not aware of any other comparable
robotic framework which is used bare metal. Notably, this a
major design goal for ROS 2.0. The following section presents
deployment of a FINROC application on a bare metal soft
core running in an FPGA. This case study was selected as
an evaluation of relevant quality attributes often in conflict
with modular designs – and of the target of “one fits more”.

Fig. 10 shows the FINROC configuration that is run bare
metal in the experiments. It is cross-compiled and run in
single-threaded mode with all libraries being statically linked.
Notably, any further blocks that do not require an operating
system can be added when needed. Only a small set of
functions had to be added that were missing in the Altera
C++11 implementation.

The targeted FPGA is at the core of an embedded system
developed for the encapsulation of the RRLAB SEA – a
Series Elastic Actuator (SEA) [24]. The SEAs, and hence
the embedded nodes, are actuating the Compliant Robotic
Leg (CARL) (see Fig. 11). CARL is a bio-inspired leg that
includes – inspired by the morphology of humans – mono-
as well as biarticular actuation. As, in this scenario, small
physical dimensions, a low energy consumption, high cycle

160 Journal of Software Engineering for Robotics 8(1), December 2017

core (5.0 kSLOC)

time (750
SLOC)

logging (1.8 kSLOC)

thread (1.7 kSLOC) serialization
 (4.4 kSLOC)

concurrent_
containers (2.3 kSLOC) rtti (3.2 kSLOC)

bu�er_pools
 (603 SLOC)

data_ports (6.5 kSLOC)

)COLSk 4.2(sretemarap

scheduling (1.1 kSLOC)

structure (1.6 kSLOC)

)COLSk 5.4(tropsnart_krowten

�n
ro

c
Fin

ro
c

co
m

po
ne

nt
s

ib
2c

IB
2C

co
m

po
ne

nt
s

�nem
bp

Fig. 10: FINROC configuration run bare metal

frequencies, and a deterministic timing are hard requirements
for the embedded system, FPGAs are an opportune solution.
They provide the flexibility to design a system that optimally
supports the deployment of a full-featured framework to a bare
metal embedded CPU.

The concept and implementation of the FPGA system for
the deployment of FINROC is presented at an early stage
in [21]. By following a HW/SW codesign approach, it is pos-
sible to achieve a good balance between computational perfor-
mance on the one side and the application requirements on the
other side. Conceptually, the Ethernet-based communication is
decoupled from the application by distributing the two tasks to
separate subsystems – communication and application system.
At the core of each is a soft core – the NIOS II processor
from Altera10. The two CPUs are coupled via a dual-ported
RAM, all data transfers are executed by DMAs. Generally, the
decoupling allows for a high communication bandwidth with a

10. https://www.altera.com/

(a) (b)

Fig. 11: (a) The Bio-inspired Compliant Robotic Leg (CARL)
suspended by the enclosing test-rig. (b) Close view of CARL’s
torso and thigh. The five embedded systems as well as the
Ethernet switch can be seen.

Fig. 12: The FPGA-based system with a RRLAB SEA in the
background.

high cycle frequency as well as a low jitter on the application
side. The system is accomplished by an ELMO Gold Twitter
25/10011 which is handling the commutation and the current
control of the BLDC motor driving the RRLAB SEA. The
embedded system as well as the down-scaled version of the
RRLAB SEA is shown in Fig. 12.

To abstract the RRLAB SEA as an impedance source while

11. http://www.elmomc.com/

https://www.altera.com/
http://www.elmomc.com/

M. REICHARDT et al./ On Highly Modular Quality-Driven Design of Robotic Frameworks and Middleware 161

Fig. 13: FINROC system executed on the FPGA, illustrated by
FINSTRUCT

maintaining high closed-loop frequencies, the application CPU
is extended by dedicated IP-Cores. The structure of the
cascaded control loops is discussed in [25]. Each element
of the closed-loop control is implemented in software us-
ing a FINROC Sense-Control Module component. They are
complemented by a component for hardware abstraction.
Fig. 13 shows the resulting software system as visualized in
FINSTRUCT. FINSTRUCT is FINROC’s standard graphical tool
for runtime visualization of component graphs, for accessing
components’ port and parameter values, as well as for runtime
construction (adding, connecting, and deleting components;
editing component interfaces).

In the following, the performance of the application soft-
ware is analyzed with respect to the execution timing and
the jitter of the different components. In order to capture
the software timing without producing significant overhead,
a dedicated IP-Core was implemented. The value of a counter
driven by the 100MHz system clock is stored to embedded
memory each time a flag is triggered from the software. It
is ensured that the calls to the IP-Core are minimal – two
consecutive snapshots take 2 clock cycles without any jitter.

The main functionality of FINROC sense-control modules is
executed by its Sense and Control tasks. Tasks are attached
to threads – in this application to a single thread. Based
on the data flow, their execution order is determined by the
default FINROC scheduler – and equals the listing order of
the measuring points in Table 2. After a FINROC execution
cycle, data exchange between the two CPUs is handled. Then,
in order to keep the cycle time constant, the CPU idles until
the next cycle start. The resulting timing within a cycle is
plotted in Fig. 14, a quantitative interpretation of the data is
given in Table 2. A timestamp is captured at the beginning
of each control (red) and sense task (yellow). Additionally,
timestamps are captured at the cycle start and end, after the
FINROC execution, and after the data handling (grey).

It can be seen that the system can be run with a frequency
of 4kHz (25000 CPU cycles per execution). This execution
frequency compares well to the achieved performance in

Measuring Point Avg. CPU cycles Std. Deviation Max. Jitter
Cycle Start -1 14.3 64.5
HW Abstraction - Sense 711 16 72.7
ELMO Interface - Sense 4663 74.8 249.3
PID Control - Sense 5785 74.9 270.1
DOB - Sense 7182 117 364.9
Impedance Control - Sense 7536 138.4 414.2
HW Abstraction - Control 7914 138.9 414.2
Impedance Control - Control 8435 140.9 436.3
DOB - Control 10074 180.6 520.4
PID Control - Control 11105 201.4 569.4
ELMO Interface - Control 12074 201.5 569.4
Finroc Cycle End 13240 218.7 633.5
Data Handling End 22064 2201.3 5534.5
Cycle End 24868 13.7 49.1

TABLE 2: Timing during an execution cycle

similar systems [23], [26], [27]. Within the FINROC loop, the
jitter increases to a maximum of 569.4 cycles. Relative to the
overall cycle length, the execution timing varies by 2.29%.

In this experiment, the NIOS II is configured with 32KB
of instruction and data cache as well as dynamic branch
prediction of 4096 entries. While improving the overall per-
formance, the underlying heuristics of those features naturally
introduce a jitter to the software execution. Hence, the numbers
given above are heavily dependent on the functional interac-
tion between the software implementation – e.g. number of
modules and variables – and the configuration of the CPU.
Nevertheless, they show that by following the proposed design
approach, it is possible to deploy a full-featured robotic frame-
work to a bare metal embedded system while matching or even
exceeding the execution frequency of comparable systems.
Additionally, the benefits coming with a full-featured robotic
framework facilitate the development and the debugging of
complex robotic systems.

6.2 Framework Extensibility and Modifiability

Achieving extensibility, modifiability, and – related – main-
tainability are central design goals of the proposed approach.
Accordings to [2], “Tactics that split modules will reduce
the cost of making a modification to the module that is
being split” – so high modularity is desirable in this respect.
Changes are typically more localized. With the possibilty
to add, remove, or replacing blocks (framework concerns),
highly modular frameworks are explicitly designed with a
mechanism for modifiability. Section 3 and Fig. 2a sketch
many scenarios for extending and modifying such a highly
modular framework. As can be seen in Fig. 8, blocks in most
of the mentioned categories have actually been implemented.
Each can be seen as a case study and proof of concept
of framework extensibility for the extension category they
belong to – namely: supporting different network protocols,
adding support for scripting and domain-specific languages,
supporting further component models, or temporarily adding
development extensions. More concern-specific are extensions

162 Journal of Software Engineering for Robotics 8(1), December 2017

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

0

0.5

1

1.5

2

2.5

·104

Finroc Cycles

C
P
U

C
y
cl
es

Fig. 14: Illustration of the execution timing within a cycle

that provide different data recording backends, web interface
modules, or runtime type conversion operations.

7 CONCLUSION AND OUTLOOK

As discussed, the design of a robotics framework is in many
ways a tradeoff between different quality characteristics and
also other relevant design goals under given constraints. The
proposed approach is no exception in this regard. With respect
to bare metal embedded nodes, for instance, it is certainly pos-
sible to write software with better performance characteristics.

With the proposed modular approach, however, a framework
can be suitable for a broader range of applications and target
more platforms than without. As we show, the level of perfor-
mance can actually be sufficient for applications on an FPGA
soft core. In these cases, the approach brings significant added
value with respect to other quality characteristics including
e.g. runtime modifiability (creating, connecting and deleting
components) or a consistent development process and tooling
for all target platforms.

Overall, we show that proposed approach is generally feasi-
ble – and that is has a positive impact on many relevant quality
characteristics of robotics software. In the limited scope of
this paper, this cannot be analyzed for all the numerous
relevant quality characteristics. Therefore, evaluation focused
on quality characteristics (performance efficiency and timing
determinism) that tend to be in conflict with very modular
designs. Evaluation with respect to other characteristics will
be part of future work.

As a further contribution, the decomposition in Fig. 2a
contains an overview of many relevant framework concerns –
and is the result of literature research, design experience, and
domain modeling. For many of today’s frameworks we miss
an illustration of their architectural decomposition structure [2]

– and encourage to create them for improved reasoning on
designs.

In addition, we have presented how we currently model
domain knowledge on framework design. This is still in
an early state – and this topic certainly requires additional
research. It would likely benefit from a collaborative approach.

Applying highly modular designs to model-driven develop-
ment solutions would be another interesting direction of future
research – as would be more formalized interface definitions
of framework concerns. In general, as mentioned, how to
support quality characteristics of robotics software by means
implemented in frameworks is considered a key topic for
further research.

REFERENCES
[1] J. Dörr, Elicitation of a Complete Set of Non-Functional Requirements,

ser. PhD Theses in Experimental Software Engineering. Fraunhofer
Verlag, Stuttgart, 2011, vol. 34, ISBN: 978-3-8396-0261-4. 1

[2] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
3rd ed. Addison-Wesley Professional, 2012, ISBN: 978-0-3218-1573-6.
1, 3, 6.2, 7

[3] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in Proceedings of the Workshop on Open Source Software in
Robotics, in conjunction with the IEEE International Conference on
Robotics and Automation (ICRA), Kobe, Japan, May 12-17 2009. 2

[4] A. Makarenko, A. Brooks, and T. Kaupp, “On the benefits of making
robotic software frameworks thin,” in IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS 2007), San Diego,
California, USA, October 29-November 2 2007. 2, 3, 5

[5] A. Y. Elkady and T. M. Sobh, “Robotics middleware: A comprehensive
literature survey and attribute-based bibliography,” Journal of Robotics,
vol. 2012, 2012, doi:10.1155/2012/959013. 2

[6] C. Jang, S.-I. Lee, S.-W. Jung, B. Song, R. Kim, S. Kim, and C.-H.
Lee, “Opros: A new component-based robot software platform,” ETRI
Journal, vol. 32, pp. 646–656, 2010. 2, 2

[7] T. Hammer and B. Bäuml, “The highly performant and realtime deter-
ministic communication layer of the ardx software framework,” in 16th
International Conference on Advanced Robotics (ICAR), Montevideo,
Uruguay, November 25-29 2013. 2

[8] I. A. Nesnas, “The claraty project: Coping with hardware and software
heterogeneity,” in Software Engineering for Experimental Robotics, ser.
Springer Tracts in Advanced Robotics, D. Brugali, Ed. Berlin /
Heidelberg: Springer - Verlag, April 2007, vol. 30. 2

[9] B. P. Gerkey, R. T. Vaughan, and A. Howard, “The player/stage
project: Tools for multi-robot and distributed sensor systems,” in 11th
International Conference on Advanced Robotics (ICAR 2003), Coimbra,
Portugal, June 30 - July 3 2003, pp. 317–323. 2

[10] P. Soetens, “A software framework for real-time and distributed robot
and machine control,” Ph.D. dissertation, Department of Mechanical
Engineering, Katholieke Universiteit Leuven, Belgium, May 2006. 2

[11] A. Mallet, C. Pasteur, M. Herrb, S. Lemaignan, and F. F. Ingrand,
“Genom3: Building middleware-independent robotic components,” in
IEEE International Conference on Robotics and Automation (ICRA
2010), 2010, pp. 4627–4632. 2

[12] P. Fitzpatrick, G. Metta, and L. Natale, “Towards long-lived robot genes,”
Robotics and Autonomous Systems, vol. 56, no. 1, pp. 29–45, January
2008. 2

[13] C. Schlegel, T. Haßler, A. Lotz, and A. Steck, “Robotic software sys-
tems: From code-driven to model-driven designs,” in 14th International
Conference on Advanced Robotics (ICAR), Munich, Germany, June 22-
26 2009. 2

[14] D. Brugali and L. Gherardi, “Hyperflex: A model driven toolchain for
designing and configuring software control systems for autonomous
robots,” Studies in Computational Intelligence, vol. 625, pp. 509–534,
February 1 2016, doi: 10.1007/978-3-319-26054-9 20. 2, 3

M. REICHARDT et al./ On Highly Modular Quality-Driven Design of Robotic Frameworks and Middleware 163

[15] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture - Volume 1: A System of Patterns.
Wiley Publishing, 1996. 3

[16] M. Reichardt, T. Föhst, and K. Berns, “On software quality-motivated
design of a real-time framework for complex robot control systems,”
Electronic Communications of the EASST, vol. 60: Software Quality
and Maintainability 2013, August 2013, this publication is available at
http://journal.ub.tu-berlin.de/eceasst/article/view/855. 3, 5

[17] N. Ando, T. Suehiro, and T. Kotoku, “A software platform for component
based rt-system development: Openrtm-aist,” in Simulation, Modeling,
and Programming for Autonomous Robots, ser. Lecture Notes in Com-
puter Science, S. Carpin, I. Noda, E. Pagello, M. Reggiani, and O. von
Stryk, Eds. Springer Berlin / Heidelberg, 2008, vol. 5325, pp. 87–98.
3

[18] H. Bruyninckx, M. Klotzbücher, N. Hochgeschwender, G. Kraetzschmar,
L. Gherardi, and D. Brugali, “The brics component model: A model-
based development paradigm for complex robotics software systems,”
in 28th Annual ACM Symposium on Applied Computing, ser. SAC
’13. Coimbra, Portugal: ACM, March 18-22 2013, pp. 1758–1764,
doi: 10.1145/2480362.2480693. 3

[19] M. Lutz, D. Stampfer, A. Lotz, and C. Schlegel, “Service robot control
architectures for flexible and robust real-world task execution: Best
practices and patterns,” in Workshop Roboterkontrollarchitekturen, Infor-
matik 2014, ser. Lecture Notes in Informatics (LNI), Suttgart, Germany,
2014. 4

[20] K.-U. Scholl, J. Albiez, and B. Gassmann, “Mca - an expandable
modular controller architecture,” in Proceedings of the 3rd Real-Time
Linux Workshop, Milano, Italy, November 26-29 2001. 5

[21] S. Schütz, M. Reichardt, M. Arndt, and K. Berns, “Seamless extension of
a robot control framework to bare metal embedded nodes,” in Informatik
2014, ser. Lecture Notes in Informatics (LNI), Stuttgart, Germany, 2014,
pp. 1307–1318. 5, 6.1

[22] M. Proetzsch, T. Luksch, and K. Berns, “Development of complex
robotic systems using the behavior-based control architecture iB2C,”
Robotics and Autonomous Systems, vol. 58, no. 1, pp. 46–67, January
2010, doi:10.1016/j.robot.2009.07.027. 5

[23] N. A. Radford, P. Strawser, K. Hambuchen, J. S. Mehling, W. K.
Verdeyen, A. S. Donnan, J. Holley, J. Sanchez, V. Nguyen, L. Bridgwater
et al., “Valkyrie: Nasa’s first bipedal humanoid robot,” Journal of Field
Robotics, vol. 32, no. 3, pp. 397–419, 2015. 6.1, 6.1

[24] S. Schütz, K. Mianowski, C. Kötting, A. Nejadfard, M. Reichardt, and
K. Berns, “RRLAB SEA – A highly integrated compliant actuator
with minimised reflected inertia,” in IEEE International Conference on
Advanced Intelligent Mechatronics (AIM), 2016. 6.1

[25] S. Schütz, A. Nejadfard, and K. Berns, “Influence of loads and design
parameters on the closed-loop performance of series elastic actuators,” in
IEEE International Conference on Robotics and Biomimetics (ROBIO),
2016. 6.1

[26] M. A. Hopkins, S. A. Ressler, D. F. Lahr, A. Leonessa, and D. W.
Hong, “Embedded joint-space control of a series elastic humanoid,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2015, pp. 3358–3365. 6.1

[27] C. Ott, O. Eiberger, W. Friedl, B. Bäuml, U. Hillenbrand, C. Borst,
A. Albu-Schäffer, B. Brunner, H. Hirschmüller, S. Kielhöfer, R. Koni-
etschke, M. Suppa, T. Wimböck, F. Zacharias, and G. Hirzinger, “A
humanoid two-arm system for dexterous manipulation,” Proceedings of
the 2006 6th IEEE-RAS International Conference on Humanoid Robots,
HUMANOIDS, pp. 276–283, 2006. 6.1

Max Reichardt received his Dipl.-Inf. degree in
computer science from the University of Kaiser-
slautern in 2008. Since August 2008, he is PhD
student at the Robotics Research Lab. Software
Engineering in the context of robotics is his
main area of research. Topics of particular in-
terest include software frameworks, their quality
attributes, and design principles. He is a main
author of the FINROC framework. In October
2015, Max joined Robot Makers GmbH where he
works as robotics software engineer in research

and development. In this position, he has contributed to more than a
dozen of successful projects in the domain of mobile automation – for
different customers and organizations.

Steffen Schütz received his Dipl.-Ing. degree in
mechanical engineering specializing in mecha-
tronics and microsystems from the Karlsruhe
Institute of Technology in 2011. In late 2011,
he joined the the Robotics Research Lab where
he’s currently workig towards a PhD in computer
science.

His research interests lie in the area of
biologically-inspired artificial bipedal walking.
Within this area, the design of compliant bio-
inspired walking machines is the main focus of

his research activities. Besides the general mechanical structure and the
actuation units, this includes the design of embedded control architec-
tures. Driven by the functional, spatial and energetic requirements, they
are composed of distributed, highly dedicated FPGA-based embedded
systems designed following a HW/SW co-design approach.

Karsten Berns received his PhD from the Uni-
versity of Karlsruhe in 1994. As head of the IDS
(Interactive Diagnosis and Service Systems) de-
partment of the FZI Research Center for In-
formation Technology, Karlsruhe (until 2003) he
examined adaptive control concepts for different
types of service robots. Since 2003, he is a full
professor for robotic systems at the University of
Kaiserslautern. Present research activities are
in the area of autonomous mobile robots and
humanoid robots with a strong focus on control

system architectures and behavior-based control. Karsten is a member
of the IEEE, the Gesellschaft für Informatik (GI), and the CLAWAR
Association. He is furthermore member of the executive committee of
the German Robotics Association (DGR) and is currently leader of the
technical committee for robotic systems of the GI.

http://journal.ub.tu-berlin.de/eceasst/article/view/855

	Motivation
	Related Work
	Highly Modular Framework Design
	Modeling Design Knowledge
	Implementation
	Experiments and Evaluation
	Running Finroc Applications Bare Metal
	Framework Extensibility and Modifiability

	Conclusion and Outlook
	References
	Biographies
	Max Reichardt
	Steffen Schütz
	Karsten Berns

